FREE

  • About Us
    • Mission & Purpose
    • Organizational Structure
    • Free Team
      • Board of Directors
      • Financial Advisors
      • Staff
      • Research Team
      • Co-Founders
  • PennSEF
    • About
    • Participating
    • Documents
    • Current Indicative Borrowing Rates
    • Financing
    • Webinars
  • The SEU
    • About / The Model
    • FREE and the SEU Initiative
    • Education and Advisory Service
  • Research
  • News & Blog
    • Announcements
    • FREE Thoughts Blog
    • In the Media
  • Library
    • Policy Briefs
    • Publications
    • Videos
  • Contact Us
  • Donate
You are here: Home / Archives for Energy Economics

June 11, 2018

California’s Bold Solar Energy Vision

By Joseph Nyangon
How California’s New Rooftop Solar Mandate Will Build Additional Value for Its Customers

Luminalt solar installers Pam Quan (L) and Walter Morales (R) install solar panels on the roof of a home on May 9, 2018, in San Francisco. (Credit: Justin Sullivan / Getty Images).

The boldest new plan yet to increase electricity generation from noncarbon-producing sources has been announced by California. Highly regarded as a trendsetter and vanguard of progressive energy policies, California became the first state to require solar power installed on all new homes. The requirement makes rooftop solar a mainstream energy source in the state’s residential market. Adopted by the California Energy Commission (CEC) as an update to the state’s 2019 Title 24, Part 6, Building Energy Efficiency Standards [1], the solar mandate obligates new homes built after Jan. 1, 2020 to include photovoltaic (PV) systems.

These standards represent a groundbreaking development for clean energy. Single-family homes and multifamily units that are under three stories will be required to install solar panels. The biggest impact may prove to be the incentive for energy storage and the expected uptake in energy efficiency upgrades which could significantly cut energy consumption in new homes.

But not everyone is celebrating. Critics warn that the requirement could drive up home prices overall, further exacerbating already high housing costs in the state. For instance, in a letter to CEC, Professor Severin Borenstein of the Haas School of Business at UC Berkeley warned that such a plan would be an “expensive way to expand renewables” to achieve clean energy goals [2]. But in its order, CEC argued that the new rooftop solar mandate would save homebuilders and residents money in the long-term and cut energy-related greenhouse-gas emissions in residential buildings.

Few solar firms, homebuilders, efficiency experts and local governments fully understand the significance of the mandate. Buildings-to-grid integration experts speak of “turning residential solar into an appliance,”—the merging of rooftop solar, home energy management, energy storage, and data analytics into the next generation of high-performance buildings that is expected to usher in a new era of sustainable development.

How could this new solar mandate help improve grid management so that these ‘new power plants’—clusters of buildings integrated into the grid—can respond quickly to load signals like water heating or home entertainment and thereby contribute to better system reliability? Of course, there are a lot for stakeholders to grapple with between now and 2020 as they come up with compliance solutions to address these opportunities. But this gap, especially, poses a significant challenge in how the new California’s Title 24 codes will affect the clean energy industry.

On the delivery side, First Solar Inc.—a U.S. panel manufacturer—and Sunrun—the largest U.S. residential-solar installer—could be major beneficiaries of the new building codes considering their established market positions in the state. The U.S. Energy Information Administration’s Annual Energy Outlook 2018 puts the mid-point estimate of installed solar capacity required to meet the state’s ambitious ‘50% by 2030’ renewable portfolio standard (RPS) target at around 32 GW (Figure 1). California currently has an installed solar capacity of 18.6 GW, indicating that it has only until the beginning of the next decade to find technical, business, and policy solutions to realize a 50% increase in installed PV capacity. Considering that the core elements of the requirements are now technically locked in, greater cooperation with solar industry players is needed for the success of this bold energy vision.

Figure 1: AEO 2018 estimate of renewable energy generating capacity and emissions in California (2016-2050)

Here are suggestions of what needs to be done to succeed. The provision of today’s electricity services is fundamentally dependent on its transmission, distribution, and storage (TD&S) systems; these functions include business activities that support construction, operation, maintenance and in this case, overhaul California’s electricity infrastructure [3]. According to the 2018 U.S. Energy and Employment Report (USEER), national employment in TD&S including retail service was approximately 2.35 million in 2017, with nearly 7% growth expected in 2018, mostly in manufacturing, construction, installation/repair, and operation of TD&S facilities [4]. Using these national figures as rough benchmarks for job generation, the new solar building mandate represents a major growth opportunity for the solar industry. However, there are transmission implementation challenges that could occur in the future. Orders 890 and 1000 by the Federal Energy Regulatory Commission (FERC) require transmission providers to treat demand resources comparably with transmission and generation solutions during transmission planning. Which means that a clarification is required of whether onsite generation under Title 24 would count toward compliance with FERC’s orders.

With proper distribution and transmission planning coupled with the fact that new homes will have better efficiency overall, California could reap significant benefits from the solar mandate and pioneer in mainstreaming non-wire alternative business models associated with solar distributed generation systems [5]. Deferring and reducing costs to capacity upgrades for distribution and transmission under a distributed utility regime, is one example. For this reason, California regulators would need to anticipate and address compliance issues that could result during the implementation period, such as concerns regarding flexibility measures, the estimated number of homes that would comply with the codes, and year-on-year market bottlenecks that may occur without a rapid change in business models. Further greater stakeholder engagement and partnerships with the building industry, universities and research organizations will be needed to track progress on single–family and multi-family solar development.

Another key step is to improve the revenue model for all generation technologies to reconcile with long-term contracts. In recent years, as solar power grew in the Western Electricity Coordinating Council region, and particularly in California, future prices of solar electricity became uncertain. Today’s electricity prices are set based on the variable cost of the marginal technology. Because technologies like rooftop solar, once built have near-zero marginal costs, this could put downward pressure on long-term electricity prices. Good news for customers and the economy! But payment for TD&S may be of risk. States have been solving this problem by implementing long-term fixed pricing systems, either through power purchase agreements (PPA) or capacity mechanisms, which carry the full-price risk of the technology. California (and New York) has proposed new revenue models that balance the pace of improvement in technology cost and revenue returns [6]. Still, further adjustments to the revenue model may be required in the future.

The logic behind California’s solar mandate is to reposition the market so that the bulk of generation will increasingly come from customer-sited equipment. This is significant: rooftop solar is one of the most effective customer-sited solutions for accelerating a decentralized grid and greening our electricity supply. Apart from the anticipated long-term cost-reductions to the grid, we can infer that CEC may have been guided by the growing market potential of rooftop solar when crafting the new building code energy-efficiency standards. As to the question of the economic viability of the standards to the grid, a detailed study is needed to take into account direct and indirect impacts.

Recently, there has been mention of the mounting problem widely known as the “duck curve”—that is, the sun shines only during the day which means that the solar energy cannot meet the system’s demands when the sun goes down or cloud cover disrupts solar energy system output. This phenomenon can force utilities to ramp up non-solar generation, thereby undermining some of the benefits of a low-carbon strategy. This concern raises a question: What happens to the value of solar energy produced as new additional capacity grows? Over-generation? Because retail competition is still limited in volume to support the anticipated market growth under the new standards, the value of the additional solar generation could decline. Furthermore, the grid would need to be prepared to anticipate and handle any over-generation. CEC is aware of the duck curve problem and included a compliance credit for energy storage in the Title 24 codes to address the issue. But this may not be enough. Options for maximizing on-site solar use should be sought as capacity grows. In addition, while greater electrification of buildings is noteworthy for the utility business model, without offering incentives to residential solar producers, for instance, in the form of affordable construction materials that socializes costs overall ratepayers and introduces new products and services that guarantee long-term profitability, the latest round of CEC building codes could raise significant grid management issues and market uncertainties thus exacerbating the duck curve problem. In brief, the role of utilities in interconnecting these ‘power plants’ and managing any over-generation issues will become more critical.

Growth from the new solar mandate and steps taken to incentivize storage and energy efficiency upgrades may not produce profits for utilities in the short term. But adoption of the Title 24 codes offers utilities opportunities for greater electrification and enables them to search for cost-effective pathways to reduce carbon emissions. In a study of grid decarbonization strategies in California, Southern California Edison (SCE) found that a clean power and electrification path can provide an affordable and feasible approach to achieving the state’s climate and air quality goals [7]. While the cost of managing the grid is an important consideration for utilities like SCE, approval of the new solar mandate is an important reminder of the changing utility industry. Power companies are developing new ways to extract value from emerging distributed solar technologies and expand customer choices. The success of the Title 24 codes will depend to a significant degree on supportive regulation [8,9]. With billions of investments required for grid modernization to address the aging infrastructure issues, finding a sustainable operating model that enables utilities to recuperate costs through rates is fundamental. This is a long-term proposition and power companies should treat it as such.

Despite the challenges discussed above, California’s new Title 24 mandate represents the boldest and most inspiring building energy efficiency standards by any state to date [10]. No doubt the questions surrounding future electricity rates, grid management issues, retail competition, investments in TD&S, design of long-term contracting via PPA mechanisms, and the impact on housing prices require significant attention. But this solar mandate can be an unprecedented energy-problem solving strategy that turns every home into a power plant as solar becomes more mainstream.

Additional Resources
[1] Rulemaking on 2019 Building Energy Efficiency Standards: https://energy.ca.gov/title24/2019standards/rulemaking/
[2] Email response by Severin Borenstein regarding new building energy efficiency standards rulemaking to mandate rooftop solar on all new residential buildings: https://faculty.haas.berkeley.edu/borenste/cecweisenmiller180509.pdf
[3] Nyangon, J. (2015). Why the U.S. urgently needs to invest in a modern energy system. FREE. https://freefutures.org/why-the-u-s-urgently-needs-to-invest-in-modernizing-its-energy-infrastructure/
[4] The 2018 U.S. Energy and Employment Report was prepared by the Energy Futures Initiative (EFI) and the National Association of State Energy Officials (NASEO): https://static1.squarespace.com/static/5a98cf80ec4eb7c5cd928c61/t/5afb0ce4575d1f3cdf9ebe36/1526402279839/2018+U.S.+Energy+and+Employment+Report.pdf
[5] Nyangon J. (2017). Distributed energy generation systems based on renewable energy and natural gas blending: New business models for economic incentives, electricity market design and regulatory innovation [Ph.D. dissertation]. College of Engineering, University of Delaware. Google Scholar.
[6] Nyangon J, Byrne J. (2018). Diversifying electricity customer choice: REVing up the New York energy vision for polycentric innovation. In: Tsvetkov PV, editor. Energy Systems and Environment. London, UK: IntechOpen. pp. 3-23. Google Scholar
[7] The Clean Power and Electrification Pathway: An exploration of SCE’s proposal to help realize California’s environmental goals: https://www.edison.com/content/dam/eix/documents/our-perspective/g17-pathway-to-2030-white-paper.pdf
[8] Nyangon, J. (2015). Obama’s Budget Proposals for Clean Energy and Climate Investment. FREE. https://freefutures.org/obamas-budget-proposals-for-clean-energy-and-climate-investments
[9] Nyangon, J. (2015). Mobilizing Public and Private Capital for Clean Energy Financing. FREE. https://freefutures.org/mobilizing-public-and-private-capital-for-clean-energy-financing/
[10] Nyangon, J. (2014). International Environmental Governance: Lessons from UNEA and Perspectives on the Post-2015 Era. Journal on Sustainable Development Law and Policy 4: 174–202. Google Scholar

Filed Under: Climate Change, Energy Economics, Energy Markets, Renewable Energy Tagged With: Building Energy Efficiency Standards, California, Duck Curve, Solar City, Solar Electricity, Solar Mandate, Title 24

September 15, 2015

Why the U.S. Urgently Needs to Invest in a Modern Energy System

By Joseph Nyangon
Investment in ‘smart’ energy offers a viable and effective long-term solution that allows the energy industry to shift its supply sources, build new transmission and storage systems, and increase its energy efficiency goals.

QER Report cover
The U.S. power grid is one of the most advanced energy systems globally, but its growth has been an evolving patchwork of disparate systems, functions, and components.

In a speech commemorating the thirty-fifth anniversary of the International Energy Agency (IEA) in 2009, former U.S. secretary of state, Henry Kissinger recalled how the energy crisis of the 1970s awakened the world “to a new challenge that would require both creative thinking and international cooperation.”[1] He explained that as “global demand continues to grow, investment cycles, technologies, and supporting infrastructure will be critical.” As a top U.S. diplomat in the 1970s, Kissinger is credited with promoting energy security as a third pillar of the international order through a trifecta of initiatives to bolster incentives to energy producers to increase their supplies, encourage rational and prudent consumption of existing supplies, and improve the development of alternative energy sources. These efforts contributed to the establishment of the IEA in 1974 as a principal institutional mechanism for enhancing global energy cooperation among industrialized nations.

Forty years after the IEA’s founding, the relationship between energy and international cooperation endures, but changes in the energy landscape triggered by a revolution in how we produce, distribute, and consume various forms of energy are affecting the IEA’s fans. The agency interestingly examines the role of sustainable energy options and considers institutional change as often eclipsing conventional supply issues in shaping our energy future. For example, the challenges facing the electric power industry today include the need for diversification of generation, optimal deployment of expensive assets, carbon emissions reduction, and investment in decoupling strategies and demand response. Two key policy imperatives characterize these challenges, notably: the need to adopt policies that combat climate change, and the need for greater energy security due to concerns associated with supply-demand imbalances. Once again, we are at a moment of institutional and industry-wide transformation that calls for strategic investment and partnership to replace, protect, expand, and modernize our energy infrastructure. It is easy to slip into thinking of the nation’s energy landscape as a static challenge. It is not. The boundaries, business models, policies, strategies, and technical solutions have been a function of the incentives and objectives provided by the policy.

The U.S. power grid is one of the most advanced energy systems globally, but its growth has been an evolving patchwork of disparate systems, functions, and components. Because of years of inadequate investment, the electric grid is now aging, outmoded, and unreliable to take full advantage of new domestic energy sources and emerging technologies and business models in the sector. In climate, energy, and economic terms, these issues are defined by whether the next wave of energy infrastructure will further the status quo of the path of least resistance and principally continue relying on conventional fossil energy sources or transition to efficient technologies and a clean energy future. In the first-ever Quadrennial Energy Review (QER) of the U.S. energy infrastructure released in April 2015, modernizing the nation’s energy infrastructure, to foster economic competitiveness, create a domestic clean energy economy, improve energy security, and promote environmental integrity, are identified as central policy concerns facing the country in a time of rapid change. President Obama ordered the review when he unveiled his Clean Power Plan in early January 2014.[2]

Here are six key policy recommendations of the QER report.

  1. Improve the capacity of states and localities to identify and respond to potential energy disruptions: The review identifies severe weather events as the major cause of electric grid disturbances. From 2003 to 2012, severe weather caused an estimated 679 widespread power outages in the U.S. costing the economy between $18 billion and $33 billion annually.[3] Low-probability/high-consequence events also caused various types of electric grid disturbances in energy transmission, storage, and distribution infrastructure, including natural gas transmission infrastructure systems such as pipeline and storage leading to safety concerns. These threats and vulnerabilities vary substantially by region with the Gulf Coast region being more susceptible to hurricanes, thus requiring regional solutions. The report recommends investing in new technologies like smart meters and automated switching devices to ensure much quicker recovery times from disruptions. It also recommends establishing a multi-year program by the U.S. Department of Energy to support the updating and expansion of state energy assurance plans.
  2. Increase investments in electric grid modernization through the expansion of different business models, utility structures, and innovative technologies: The review identifies increased investments in flexible operations and resilience as a more effective and economical solution for serving customer needs by enabling smart growth, in both transmission and distribution systems. Investment in transmission has been on the rise since the 2000s and is expected to grow with improved system reliability and interconnection requirements of distributed generation sources. In 2013, the report explains that investor-owned utilities spent a record high of $16.9 billion on transmission, up from $5.8 billion in 2001.[4] The growing level of transmission investment is needed to replace the aging infrastructure, increase system reliability, and facilitate competitive wholesale power markets. The report recommends adopting new business models, utility structures, and institutions to shape the operation, management, and regulation of the grid as well as optimize and update the Strategic Petroleum Reserve to reflect modern oil markets.
  3. Strengthen regional integration of the North American energy markets: Opportunities for increased integration of markets and policies exist in the North American neighbours: the U.S., Canada, and Mexico. To further energy, economic, and environmental goals, the report recommends developing a common energy market, shared environmental and security goals, and infrastructure that undergirds the three economies [5]. For example, in 2013, energy trade between the U.S. and Canada was approximately $140 billion, while energy trade with Mexico exceeded $65 billion in 2012—a sign of the existing opportunities for integration.[6]
  4. Update and improve quantification of methane emissions from natural gas systems: To enhance the ability of the nation to achieve the targeted environmental goals, the report calls for urgent need to address the direct environmental impacts and vulnerabilities of energy transmission, storage, and distribution infrastructure, more broadly, carbon sequestration infrastructure, long-distance transmission to enable distributed generation and utilization of renewable resources, and smart grid technologies to support energy efficiency. The QER recommends updating greenhouse gas inventory estimates of methane emissions from natural gas systems, increased funding to reduce diesel emissions under the Diesel Emissions Reduction Act, and enactment of the proposed Carbon Dioxide Investment and Sequestration Tax Credit, to support carbon capture technology and associated infrastructure.
  5. Improve siting and permitting of energy infrastructure: The QER identifies the involvement of multiple federal, state, local and tribal jurisdictions to add the time to siting, permitting, and review process of energy infrastructure projects due to overlapping and sometimes conflicting statutory responsibilities. To enhance the credibility of the process, the QER recommends increased meaningful and robust public engagement with local stakeholders to speed up siting decisions, the establishment of regional and state partnerships, and enactment and funding of relevant statutory authorities to improve coordination across agencies.
  6. Strengthen shared transport infrastructures: The report calls for the strengthening of waterborne, rail, and road transport to move energy commodities. It recommends establishing alternative funding mechanisms, public-private partnerships, and grants for shared energy transport systems.

The energy infrastructure challenges highlighted above can be addressed partly by investing in an assortment of technological innovations. This would repurpose energy sectors to trade energy efficiently in today’s extremely difficult managerial, regulatory, and financial environment. Investing in ‘smart’ energy offers a viable and effective long-term solution that allows the industry to shift its supply sources, build new transmission and storage systems, and increase its energy efficiency goals. Finally, these policy recommendations illustrate a key point: changes associated with modernizing our energy infrastructure and the attendant market solutions may change, interplant or even interfirm efficiency.

Notes
[1] Kissinger, H. (2009). The Future Role of the IEA: Speech for the 35th Anniversary of the International Energy Agency, October 2009. Available at: https://www.henryakissinger.com/speeches/101409.html. Accessed on September 15, 2015
[2] The White House (2014). “Obama Administration Launches Quadrennial Energy Review.” January 9, 2014. Available at: https://www.whitehouse.gov/the-press-office/2014/01/09/presidential-memorandum-establishing-quadrennial-energy-review. Accessed on September 15, 2015.
[3] QER (2015). Quadrennial Energy Review (QER) Report: Energy Transmission, Storage, and Distribution Infrastructure, April 2015. Available at: https://energy.gov/sites/prod/files/2015/04/f22/QER-ALL%20FINAL_0.pdf. Accessed on September 15, 2015, pp. S-10
[4] QER (2015), pp. 3-6
[5] Nyangon, J. (2014). International Environmental Governance: Lessons from UNEA and Perspectives on the Post-2015 Era. Journal on Sustainable Development Law and Policy 4: 174–202. Google Scholar
[6] QER (2015), pp. S-22

Photo: Cover of the Quadrennial Energy Review (QER)

Filed Under: Energy and Climate Investment, Energy Economics, Energy Markets Tagged With: Clean Energy Financing, Renewable Energy, Sustainable Investing

April 4, 2015

Mobilizing Public and Private Capital for Clean Energy Financing

By Joseph Nyangon
Innovative financing, increased capital investment and technological improvement are catalyzing renewable energy growth.

A key driver of recent renewable energy gains is cost. As a mass market develops and the technology improves solar and wind power have become more competitive. Photo: Solar Panel Against Blue Sky, Deutsche Bank
A key driver of recent renewable energy gains is cost. As a mass market develops and the technology improves solar and wind power have become more competitive. Photo: Solar Panel Against Blue Sky, Deutsche Bank

The energy market in the United States is undergoing a dramatic transformation, driven by technological advancement, market dynamics, and better policies and laws—none of which was a decade ago. Venture capitalists made huge profits from the computing boom of the 1980s, the internet boom of the 1990s, and now think the next boom will happen on the back of energy. These past booms, however, were fed by cheap energy: coal was cheap; natural gas was low-priced; and apart from the events following the 1973 Arab oil embargo and the 1979 Iranian Revolution, oil was comparatively cheap. However, in the space of the past decade, all that has changed. New resource finds, primarily shale resources from states such as Texas, Oklahoma, North Dakota, and Pennsylvania, exert pressure on the prices of oil and gas. At the same time, there is a growing concern of negative externalities associated with these fossil fuels.

Hybrid vehicles are doing more to fulfill their technological promise. Wind-and-solar powered alternative no longer looks so costly by comparison to natural gas—whose low prices due to increased shale production have shaken up domestic and global energy markets recently. Coal remains relatively cheap, however, its extraction damages ecosystems by destroying ecological habitats. Additionally, combustion of fossil fuels pollutes the air by emitting harmful substances into the atmosphere, such as carbon dioxide, methane, and nitrous oxide that contribute to global warming.

Oil spills, such as the 2010 Deepwater Horizon spill in the Gulf of Mexico and leakages at exploration and extraction points destabilize marine ecosystems, killing aquatic life. Utility firms seeking to avoid political and capital costs of the U.S. Environmental Protection Agency’s (EPA) Clean Power Plan and Mercury and Air Toxics Standard on existing plant performance have began to invest more in energy efficiency and low-carbon technologies that guarantee less harmful emissions. As a result, the industry is accelerating modernization of their generation fleet. These underlying factors, including innovative financing options, increased capital investment, and market incentives, have opened up a capacity gap from conventional plants and an opportunity especially for solar, wind, and other low-carbon technologies.

Innovative financing options: A key driver of recent renewable energy gains is cost. As a mass market develops and the technology improves solar and wind power have become more competitive. In California and New York, a surcharge paid by utility customers to help finance clean energy projects in the two states has generated substantial sums of money, which is being invested in energy efficiency and renewable projects. In Connecticut, the Clean Energy Finance and Investment Authority (CEFIA), a successor of Connecticut Clean Energy Fund (CCEF) has funded over $150 million of clean technology projects and awareness programs statewide.[1] As more states adopt these kinds of programs, they continue to subsidize investment in clean energy programs. Financing clean energy projects, nevertheless, continues to face stiff competition from non-renewable sources. The cost of fossil fuels is still relatively low, mostly because social costs and the price of ecological damage are not factored into existing market prices. Renewable energy development also continues to experience high transactions costs, such as in negotiating power-purchase agreements which can make them more risky to investors.

Capital costs: In the long run, however, real gross domestic product and carbon emissions are likely to be the primary drivers of clean energy consumption, because governments will try to prevent the price of energy from rising too fast or decreasing overly quickly as it can have negative effect on overall economic growth. Thus the price of fossil fuels could have only a small negative effect on the demand for clean energy. The main barrier to large-scale wind and solar projects is obvious—high upfront capital costs. Accordingly, some investors in certain parts of the country continue to demand high premium lending rates to offset the upfront capital risked up to fund clean energy projects than other conventional energy projects. At the same time, technology improvements, especially with regard to solar, and promising much lower future capital costs, which explains why solar energy is the fastest growing source of new energy simply in the U.S. and worldwide.2

Secondary effects: According to the Energy Information Administration (EIA) Short-Term Energy Outlook February 2015, utility-scale solar power generation in the U.S. will increase by more than 60% between 2014 and 2016, averaging almost 80 GWh per day in 2016.[2]  Half of this new capacity will be built in California. The World Energy Outlook 2014 estimates a 37% increase in the share of renewables in power generation in most OECD countries by 2040.[3] However, growth in renewable energy generation in non-OECD countries, led by China, India, Latin America and Africa, will more than double, according to the report. A change in energy policy or regulations in these markets could have even wider secondary effects on energy supply: positive impacts on emission reductions, accelerated substitution effects, and improved cost-competitiveness of renewable energy.

Market incentives and carbon tax: In the absence of fossil-fuel subsidies, which in 2013 alone totaled $550 billion, renewable energy technologies would be competitive with fossil power plants.[4] The effect of fossil-fuel subsidies on renewable electricity generation is fourfold: they weaken the cost competitiveness of renewable energy; boost the incumbent advantage of fossil fuels; lower the costs of fossil-fuel-powered electricity generation; and make investment in fossil-fuel-based technologies favorable over renewable alternatives. For instance, a phase-out of coal subsidies could further limit new construction and use of least-efficient coal-fired plants, thus incentivizing investment in clean energy.

Finally, if new policy causes the marketplace to internalize the risks of climate change, there would be no need for renewable energy subsidies and mandates in order for these sources to reach market parity.

Notes
[1] Connecticut Clean Energy Finance and Investment Authority: https://www.ctcleanenergy.com/Default.aspx?tabid=62
[2] Energy Information Administration’s (EIA) Short-Term Energy Outlook February 2015: https://www.eia.gov/forecasts/steo/pdf/steo_full.pdf
[3] World Energy Outlook (WEO) 2014: https://www.iea.org/publications/freepublications/publication/WEO_2014_ES_English_WEB.pdf
[4] Ibid, WEO, p.4

Filed Under: Energy and Climate Investment, Energy Economics, Energy Markets, Renewable Energy, Sustainable Urban Infrastructure Tagged With: Clean Energy Financing, Climate Finance, Energy Efficiency, Renewable Energy, Solar City, Sustainable Investing

April 3, 2015

Energy Dilemma of Ethical Cities and the Solar City’s Promise

By Job Taminiau, Jeongseok Seo and Joohee Lee

solarcityNo one in large cities would want to have a nuclear or a coal-fired power plant in their residential boundaries. Recognizing environmental and health risks of conventional power plants, it becomes increasingly unthinkable to propose the construction of such power plants near populous areas. Instead, remote locations are sought, often at the expense of local populations, and the produced electricity is then transferred to the areas of demand.

Here ‘ethical’ cities, who are concerned about detrimental impacts of their electricity consumption on supplier communities, are faced with a dilemma: either they have to build some fossil-fueled or nuclear power plants in their cities to supply electricity they need; or they have to live with shifting health or environmental consequences of such power plants to others. Besides, building large power plants in urban centers can be uneconomical as the capital cost will likely be more expensive than remote rural areas largely due to higher property prices and O&M costs will also be greater due to higher transportation costs for fuel sources, such as coal, natural gas or uranium.

Researchers at CEEP have investigated this dilemma and proposed a reorientation of the energy supply focus to include the possibilities and opportunities that are available within city boundaries. This idea has taken shape in the form of the ‘solar city’, putting forth the notion that cities can capitalize on the incoming solar energy that is collected daily but remains unused unless it is ethically and economically captured. While solar electricity is ready-made for this purpose, other energy technology options or energy saving measures can also be considered. In effect, rather than relying on the construction of additional capacity outside the municipal boundaries, the urban fabric is transformed to become a power plant itself, empowering citizens as ‘prosumers’ through a strategic and collective application of the solar city concept. Calculations performed by CEEP researchers have shown that megacities have great potential to address the economic and inequity problems of energy supply through this strategy: for example, a carefully implemented solar city strategy can account for 66% of Seoul’s energy need during daylight hours [1]. And its supply can be affordably provided to all [2].

Now, a recent study investigating the application of the solar city model has identified a viable financing strategy that allows for the gigawatt scale deployment of solar capacity [3]. Using Amsterdam, London, Munich, New York, Seoul, and Tokyo as case studies, the results show that over 300 million square meters of rooftop area could be available for PV installation and that the city-wide deployment of PV on this rooftop real estate would yield substantial energy, economic, and system benefits. The US$ 10 billion financing cost to install PV on approximately 30% of the commercial and public buildings in these cities—the building types primarily studied in the investigation—could, meanwhile, be addressed by approaching the capital markets through bond offerings.

The investigation does show, however, that city-specific policy, market, and finance conditions influence the viability of the strategy. For instance, Seoul’s low commercial retail electricity price set by the national regulator complicates the business case for a solar city strategy and can only be bridged by a more supportive policy framework, continued falling PV system prices, and/or by increasing electricity retail prices. Similarly, the investigation shows how London would need to rely on some level of policy support to allow for a cash flow capable of providing the foundation for the investment. Importantly, however, the study finds that New York City, Tokyo, Amsterdam, and Munich are all able to already implement a solar city strategy without additional policy support which returns its debt in 10 years or less.

These results are promising and can provide an alternative path that cities can take to solve their energy dilemma. Moreover, these six cities have options available to them to further improve the business case for a PV solar city application by modifying policy frameworks or, perhaps, through collaborative bond structuring. In any case, if the PV system price patterns of the past few years continue into the future, payback periods could be under ten years for most cities without any policy support.

Now, ethical cities have an option. One is to stick to the current path, that is, they consume electricity generated from fossil-fueled or nuclear power plants at the expense of supplier communities who must shoulder the risks. Or they can choose a strategy of leadership and start construction of a distributed solar power infrastructure within their own boundaries and contribute to the sustainable energy transition. The Mayor of Seoul, Mr. Park Won-Soon, has offered an interesting name for his city – “One Less Nuclear Power Plant” [4].

Notes
[1] Byrne, J., Taminiau, J., Kurdgelashvili, L., & Kim, K. (2015). A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renewable and Sustainable Energy Reviews, 830-844. https://dx.doi.org/10.1016/j.rser.2014.08.023
[2] Byrne, J. and Yoon S-J. 2014. Sustainable Energy for All Citizens of Seoul. Presentation at the Seoul International Energy Conference 2014. https://www.youtube.com/watch?v=HkTUrLbUt7Y
[3] Byrne, J., Taminiau, J., Kim, K., Seo, J., Lee, J. (forthcoming). A solar city strategy applied to six municipalities: integrating market, finance, and policy factors for infrastructure-scale PV development in Amsterdam, London, Munich, New York, Seoul, and Tokyo.
[4] Seoul Metropolitan Government. (2014). One Less Nuclear Power Plant, Phase 2: Seoul Sustainable Energy Action Plan

Photo credit: Forbes

Filed Under: Energy Economics, Renewable Energy Tagged With: Abundant Energy, Ethical Cities, NIMBY, Solar City

February 17, 2015

Obama’s Budget Proposals for Clean Energy and Climate Investment

By Joseph Nyangon
Investment in R&D is crucial to achieving simultaneously the objectives of economic growth and sustainable development.

A cross-country theme in the clean energy programs supported by the Obama budget proposal is the need for federal and private funding for research and development. Photo: Shutterstock
A cross-country theme in the clean energy programs supported by the Obama budget proposal is the need for federal and private funding for research and development. Photo: Shutterstock

President Obama has released a $4 trillion budget proposal for FY 2016. It contains a range of programs designed to encourage the deployment of next-generation clean energy and energy efficiency technologies. Here are the top five things to know about the budget in terms of clean energy and environmental investments:

1. Clean Power State Incentive Fund
The U.S. President proposes a $4 billion incentive fund to encourage states to make faster and deeper cuts in carbon emissions from electricity than would be required under the Clean Power Plan. The Environmental Protection Agency (EPA) is to administer the Clean Power State Incentive Fund, which would enable states to invest in activities that advance and complement the agency’s Clean Power Plan. The administration outlines several goals, including addressing impacts from the environmental pollution in low-income communities to supporting businesses to catalyze investment in renewable energy, energy efficiency and combined heat and power. The budget also includes $239 million to support reductions in greenhouse gas emissions programs at the EPA [1]. In particular, $25 million would be used to help states develop their Clean Power Plan strategies.

2. Permanent extension of renewable energy investment tax credits
The renewable energy Production Tax Credit (PTC) has been an important lifeline for the wind industry in the United States. It expired at the end of 2013 and Congress agreed to a one-year extension, which expired in 2014. Tom Kiernan, CEO of the American Wind Energy Association (AWEA), has called on Congress to extend the PTC, noting that “Investing in wind power makes sense and that the Production Tax Credit is the right policy to continue growing this abundant, homegrown resource.” [2] The FY 2016 budget proposal concurs, proposing a long-term and stable clean energy policy based on a permanent extension of solar and wind investment tax incentives, and reforming the incentives to make them simpler and more efficient. A separate incentive scheme for solar, the Investment Tax Credit (ITC), which authorized a 30% tax credit through 2016 before falling to 10% thereafter is set to expire at the end of 2018. The administration has proposed a permanent extension.

3. Increased investment in clean energy technologies and R&D
The administration has proposed an investment of $7.4 billion in pollution-cutting technologies—an increase of nearly 7% [3] from the $6.5 billion allocations in the FY 2015 [4], for clean energy programs and sustainable technologies. These investments in solar, wind, low-carbon fossil fuels and energy-efficiency initiatives primarily cover programs at the departments of Energy, Defense, Agriculture, and the National Science Foundation. Examples of the programs outlined in the budget include investment in electric vehicles to enhance their affordability and convenience; improvement in building efficiency programs; climate-proofing electric power grid such as storm hardening, flood-proofing, installing higher temperature-rated transformers and replacing underground transformers with saltwater submersible types; carbon capture and storage; and investment in research and development (R&D) to measure and mitigate fugitive methane emissions from natural gas systems.

4. Advancing international climate negotiations efforts and investing in the Green Climate Fund
The budget also provides $1.29 billion to advance the goals of the Global Climate Change Initiative and the President’s Climate Action Plan (which supports bilateral and multilateral engagement with major and emerging economies). This includes $500 million for U.S. contributions to the U.N.’s Green Climate Fund (GCF) to help catalyze additional private sector support for international climate action and $230 million for the Climate Investment Fund. So far, the GCF has received pledges totaling $10.2 billion from countries such as Japan, South Korea, Norway, Mexico, Sweden, United Kingdom, Indonesia, Mongolia, and more. [5]

5. Energy and climate resilience
The budget contains a panoply of provisions designed to help vulnerable parts of the country enhance their energy and climate resilience and preparedness, including increased investments in community and ecosystem resilience, and a better understanding of the projected impacts of climate change. For example, allocation of $400 million for National Flood Insurance Program Risk Mapping efforts, an increase of $184 million over FY 2015 funding levels. Additional funding has been proposed to tackle coastal resilience, wildfires, and drought resilience. These include $50 million towards the NOAA Regional Coastal Resilience Grants, $89 million to promote water conservation efforts, and $200 million to FEMA primarily for mitigation planning and facilities hardening, an increase of $175 million over current funding levels.

A cross-country theme in the clean energy programs supported by the Obama budget proposal is the need for federal and private funding for R&D [6]. The United States enjoyed remarkable success recently because of pharmaceutical and biomedical research (even if proponents of the free-market often less understand it). From securitizing energy efficiency retrofits to unlocking capital in private equity and pension funds to harnessing green bonds, investment in R&D to fund projects targeting climate resilience and low-carbon technologies is crucial to achieving simultaneously the objectives of economic growth and sustainable development. It is why analyzing the trend in federal budgetary allocation for clean energy investment is vital for understanding signals of long-term economic transformation. In every dimension of clean energy economic growth, there is a critical technological need, which must be underpinned by increasing capital flow in basic scientific research.

Notes
[1] Nyangon, J. (2015). Impacts of shale boom in the U.S. and beyond. FREE. https://freefutures.org/impacts-of-shale-boom-in-the-u-s-and-beyond/
[2] The state of the wind industry is strong: https://thehill.com/blogs/congress-blog/energy-environment/230248-the-state-of-the-wind-industry-is-strong
[3] Obama 2016 budget urges states to cut emissions faster: https://www.reuters.com/article/2015/02/02/us-usa-budget-energy-idUSKBN0L60AF20150202
[4] Budget of the United States Government, Fiscal Year 2015: https://www.whitehouse.gov/sites/default/files/omb/budget/fy2015/assets/budget.pdf
[5] Green Climate Fund Initial Resource Mobilisation: https://news.gcfund.org/wp-content/uploads/2015/02/pledges_GCF_dec14.pdf
[6] Nyangon, J. (2015). Why the U.S. urgently needs to invest in a modern energy system. FREE. https://freefutures.org/why-the-u-s-urgently-needs-to-invest-in-modernizing-its-energy-infrastructure/

Filed Under: Energy and Climate Investment, Energy Economics, Renewable Energy Tagged With: Decarbonization, Energy Markets, Innovation, Natural Gas, Sustainable Investing

  • 1
  • 2
  • Next Page »

News & Blog

  • FREE Thoughts Blog
  • Announcements
  • In the Media

Blog Categories

  • Carbon Markets
  • Climate Change
  • Energy Access
  • Energy and Climate Investment
  • Energy Economics
  • Energy Markets
  • Global Environments
  • Renewable Energy
  • Sustainable Urban Infrastructure
  • Uncategorized
  • Water-Energy Nexus

Policy Brief Authors

Policy Brief Authors

Announcements

Local Strategies to Create Sustainable Energy for All 

FREE Collaborates with International Leaders to Address Climate Change

FREE Develops Model for City-wide Energy Efficiency Calculation

Recent Posts

Seoul 1 GWp ‘Solar City’ Highlighted at Mayors Forum

FREE Facilitates Tour by the Seoul Energy Corporation of U.S. Energy Innovations

Stay Connected

Get email updates about new announcements, policy briefs and relevant information.

We never share your contact details.

Article Tags

Abundant Energy Building Energy Efficiency Standards California Carbon Markets Carbon Trading China Clean Energy Financing Climate Change Climate Finance Decarbonization Duck Curve Energy Access Energy Efficiency Energy Markets Environmental Justice Ethical Cities Green Dispatch Innovation Microbeads Natural Gas NIMBY Nuclear Energy Paris Agreement Philadelphia Pollutants Polycentric Climate Governance Renewable Energy Shale Gas Solar Solar City Solar Electricity Solar Mandate Sustainable Cities Sustainable Investing Title 24 Water-Energy Nexus

Connect

Foundation for Renewable Energy and Environment
630 5th Avenue, Suite 2000
New York, NY 10111

Mailing Address:
1013 Beards Hill Rd.
STE 101-M #200
Aberdeen, MD 21001

E: contact@freefutures.org
P: +1 212 705 8758
P: +1 215 494 7383 (Pennsylvania)

SUPPORT FREE

Social

  • Email
  • Facebook
  • RSS
  • Twitter
  • YouTube

Search FREE

Copyright © 2022 · FREE · Site by: Site la Carte