FREE

  • About Us
    • Mission & Purpose
    • Organizational Structure
    • Free Team
      • Board of Directors
      • Financial Advisors
      • Staff
      • Research Team
      • Co-Founders
  • PennSEF
    • About
    • Participating
    • Documents
    • Current Indicative Borrowing Rates
    • Financing
    • Webinars
  • The SEU
    • About / The Model
    • FREE and the SEU Initiative
    • Education and Advisory Service
  • Research
  • News & Blog
    • Announcements
    • FREE Thoughts Blog
    • Media Kit
  • Library
    • Policy Briefs
    • Publications
    • Videos
  • Contact Us
  • Donate
You are here: Home / Archives for Renewable Energy

July 5, 2022

Environmental Justice and Renewable Energy

Thomas Benson

By Thomas S. Benson

According to a March 2022 survey by the Pew Research Center, a majority of Americans favor the U.S. taking steps to become carbon neutral by 2050, with 69% calling for the U.S. to prioritize the development of alternative energy, such as wind and solar, and 31% calling for the U.S. to phase out the use of fossil fuels completely. But what is environmental justice, and what relationship does it have, if any, to renewable energy?

Defining Environmental Justice

To the U.S. Environmental Protection Agency (EPA), environmental justice is the “fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations and policies.” On Earth Day 2022, President Biden announced that environmental justice is about “addressing the disproportionate health, environmental, and economics impacts that have been borne primarily by communities of color – places too often left behind.” The disproportionate impact of environmental harms and ills felt by minorities and people of color forms the driving force and crux of the environmental justice movement that continues to shape federal, state, and local policy in the U.S. today.

A Transition in Reocognizing Environmental Justice

Regulatory agencies, such as the EPA, have not always recognized the disproportionate impact. Notably, a former assistant administrator for solid waste and emergency response of the EPA stated in 1987 that the “EPA deals with issues of technology, not sociology.” [1] Systemic racism in environmental policy has meant that, historically, the formulation of such policy has been premised on notions that “environmental protection is colorblind,” and that the EPA is a “science agency,” not an agency that deals with social issues. Additionally, the eventual recognition of environmental justice has led to what some scholars have referred to as “procedural justice” that solely consists of “more community involvement” and “box-checking exercises” but with “no changes in outcomes.” [1]

However, a transition is taking place to move beyond these box-checking exercises to collect quantitative and qualitative environmental justice data and display them in a transparent, digestible manner. For example, environmental justice mapping tools CalEnviroScreen and EJSCREEN combine numerous indicator data sets and assist in generating insights about environmental risk and impact that are “critical for decision-making purposes” and shed light on “systemic inequities” and “unfair treatment”—the disproportionate impact on low-income communities and people of color, among others. [1] In turn, there has been a call for climate solutions that address social and economic inequities and distribute the benefits, and one such solution is renewable energy.

Environmental Racism

Deploying renewable energy in these historically burdened and under-served communities comes against a backdrop of being subject to environmental racism through redlining and the intentional siting of harmful incinerators, landfills, chemical plants, refineries, and fossil fuel extraction beside these communities. Combined with a lack of resources to hire lawyers to challenge the granting of permits or violation of standards, these communities were left with little to no choice. This situation reflects a concept now known as environmental blackmail, where poor people are forced to choose between unemployment and a job that may threaten their “own health, their families’ health and the health of their community.” [2] One example of this depleted level of citizen power includes Cancer Alley in Louisiana, where nearly “every household has someone that has died from cancer.”

Equitable Deployment

But is renewable energy the solution? Yes, with strings attached. Renewable energy must be deployed equitably, and this means not harming the same communities and minorities that have been disproportionately subject to environmental harm emanating from siting facilities that are detrimental to human health and communities. Without acquiring consent or participation from communities affected by the adverse effects of renewable energy, these communities will remain in a cycle of abuse that capitalizes on their poor health and cheap labor. [3]

For example, as wind turbines grow in size, alongside their corresponding effects, it must be asked what impact these will have on the communities that are integrated into—forcefully or consensually. In practice, this means not only assessing effects on the aesthetic pleasure of the landscape or potential damage to a local ecosystem, such as loss to avian creatures, but also wind turbine syndrome, which has been known to cause “nausea, vertigo, tinnitus, sleep disturbance, and headaches.” [3] As previously mentioned, engaging local communities in a meaningful manner can generate positive community and environmental change. In turn, environmental hazards can be minimized and distributed fairly in proportion to benefits, and protective environmental regulations can be established and enforced with the same vigor for all communities.

One other solution, created from the bottom-up, is the establishment of community energy choice organizations, otherwise referred to as community choice aggregations or community choice energy. These organizations seek to remove the middle-man—the investor-owned utilities—and run community-scale renewable energy projects that decentralize power and reinvest profits from renewable energy generation into local communities. [3] Examples of re-investment include the development of further renewable energy projects, electrification of local bus networks, energy efficiency programs, scholarships for students, and the implementation of electric vehicle charging stations.

Conclusion: A Just Renewable Energy Transition

Overall, renewable energy—as fantastic as it might appear—is not a solution in and of itself. Environmental justice remains very relevant in deploying renewable energy, and local communities must be meaningfully engaged before decisions are made. Where communities do not or cannot create bottom-up organizations like community energy choice organizations, they ought to be brought into decision-making processes that can benefit businesses, government, and citizens alike. And there is evidently bipartisan support for renewable energy, with a majority of Democrats and Republicans supporting the expansion of solar panel farms (84%) and wind turbine farms (77%), according to a Pew Research Center survey in 2021.

The deployment of renewable energy does not need to be an all-or-nothing approach. Instead, by ensuring sufficient stakeholder and community engagement, the U.S. can enhance its prospects of a just and sustainable transition to a low-carbon economy—to achieving carbon neutrality by 2050 and meeting public demand for renewable energy. This transition to a low-carbon economy will also ideally fulfill the EPA’s goals of environmental justice, which means that everyone enjoys the “same degree of protection from environmental and health hazards” and has “equal access to the decision-making process to have a healthy environment in which to live, learn, and work.” The means to achieve this shared vision for the future is already here and is underway, but it must be done equitably to ensure the benefits and hazards of renewable energy are shared.

[1] Lee, C. 2021. “Confronting Disproportionate Impacts and Systemic Racism in Environmental Policy.” Environmental Law Institute: pages 2-4, 10.

[2] Bell, K. 2014. “The Causes of Environmental Injustice.” In Achieving Environmental Justice: A Cross-National Analysis. University of Bristol: Policy Press, chapter 3, page 34.

[3] Ottinger, G. 2013. “The Winds of Change: Environmental Justice in Energy Transitions.” Science as Culture 22(2): 222-229.

Filed Under: Renewable Energy, Uncategorized Tagged With: Clean Energy, Environmental Justice, Renewable Energy

July 8, 2016

The Scale of the Energy Access Gap

By Benjamin M. Attia
Access to electricity is a key catalyst correlated with economic development.

The International Energy Agency (IEA) recently estimated that over 1.5 billion people do not have access to affordable electricity, representing one quarter of the world’s population [1]. In the absence of aggressive new policies and significant financing, it is estimated that that number will drop to only 1.3 billion by 2030 [1]. The United Nations’ (UN) Sustainable Energy for All (SE4ALL) initiative, which is working toward a goal of global universal energy access by 2030, estimates that approximately 600 million of these unelectrified people live in Sub-Saharan Africa [2]. This number is expected to rise to approximately 645 million by 2030 under a business-as-usual scenario due to expected explosive population growth [2, 3]. This widening gap of energy access is a complex and multidimensional problem and represents an important hindrance to economic development and social change in the developing world.

Historically, the access gap since the initial commercialization of electricity has “consistently been between 1 and 2 billion people… as grid expansion has roughly paced global population” growth [4]. This suggests that the access gap is a reflection of a persistent lack of equity in distribution. In fact, in 1983, Krugmann and Goldemberg famously estimated that at 1983 global consumption levels, the “energy cost of satisfying the basic human needs” of every person on the planet was well within the available supply of energy resources [5, p. 60].

Today, the consumption and distribution inequalities are even more pronounced. In 2011, the average American consumed 13,240 kilowatt hours (kWh) per person per year, while the average Ethiopian consumed only 56 kWh [6]. Further, across all of Sub-Saharan Africa, annual per capita kWh use is one-sixth the load requirements of a relatively efficient American refrigerator [7]. Globally, the poorest three-quarters of the world’s population comprise less than ten percent of total energy consumption [8, p. 5].

The inequities that underline energy poverty and energy access are also fundamentally connected to climate change. Looking ahead, the world’s demand for electricity is estimated to increase by more than 70% by 2040, and the World Bank and IEA estimate that a doubling in installed energy capacity will be necessary to meet the anticipated growing demands of emerging markets [9], [10]. Despite the accelerating paradigm shift to low-carbon and renewable energy generation technologies, there is a paradoxical irony to the link between development and climate change which has left the poorest countries with the lowest contributions to greenhouse gas (GHG) emissions as the most vulnerable and most susceptible to the effects of climate change [11, p. 591, 12]. As markets evolve to value avoided GHG emissions [13, p. 215], reconciling the joint–and possibly conflicting– goals of development through universal energy access and combating climate change will accelerate, but at present, the inequity in energy access is only further exacerbated by the parallel inequities with respect to climate change adaptation measures.

Many scholars agree that access to electricity in itself is not fully sufficient to bring about the required economic and social development to break the cycle of poverty [14, p. 1058, 15, p. 2194]. It has also been widely settled that access to electricity is a key catalyst correlated with economic development and that a lack of electricity access is a key bottleneck to growth [16], see [17] for comprehensive rebuttal]. However, approaches for tackling the problems associated with energy poverty are often difficult to scale up because of the difficulties associated with navigating this uneven technical, sociocultural, agricultural, and institutional landscape, and, as will be demonstrated below, the multidimensionality of energy access inhibits scalability of any one catch-all solution.

The IEA estimates that 30% of those without access to electricity would best be served by grid extension, 52.5% would be best served by micro-grids, and 17.5% would best be served by stand-alone energy systems [3, p. 14]. There is a clear need for investment in rural electrification initiatives at all three levels and a clear gap in understanding routes and sinks for effective impact investing [3, p. 14]. National grid extension programs and firms selling small energy systems are generally much better funded than the community-scale solution of micro-grids, despite their significant potential market share and niche ability to provide scale benefits, rapid deployment, flexibility of business models, and energy storage, security, and reliability [3, p. 15]. The micro-grid space is rife with opportunity to build markets, innovate new business models, develop new financing mechanisms, and provide the sustainable development benefits of renewable electrification and increased economic potential.

As one development professional put it, “If rural [people] have power in their lives, they will have more power over their lives” [16]. Access to electricity is not the answer to the greater global problems of poverty and inequity, but can be a good place to start.

References
[1] “World Energy Outlook 2014,” Paris, France, 2014.
[2] SE4ALL, “Energy for all: Financing Access for the poor,” in Energy for All Conference, 2011.
[3] M. Franz, N. Peterschmidt, M. Rohrer, and B. Kondev, “Mini-grid Policy Toolkit: Policy and Business Frameworks for Successful Mini-grid Roll-outs,” EUEI Partnership Dialogue Facility, Escheborn, 2014.
[4] P. Alstone, D. Gershenson, and D. M. Kammen, “Decentralized energy systems for clean electricity access,” Nat. Clim. Chang., vol. 5, no. 4, pp. 305–314, 2015.
[5] H. Krugmann and J. Goldemberg, “The energy cost of satisfying basic human needs,” Technol. Forecast. Soc. Change, vol. 24, no. 1, pp. 45–60, 1983.
[6] C. Kenny, “If Everyone Gets Electricity, Can the Planet Survive?,” The Atlantic, 2015.
[7] “Power Africa Annual Report,” 2014.
[8] J. Tomei and D. Gent, “Equity and the energy trilemma Delivering sustainable energy access in low-income communities,” International Institute for Environment & Development, London, United Kingdom, 2015.
[9] “World Energy Outlook 2015 Factsheet,” Paris, France, 2015.
[10] R. K. Akikur, R. Saidur, H. W. Ping, and K. R. Ullah, “Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review,” Renew. Sustain. Energy Rev., vol. 27, pp. 738–752, 2013.
[11] A. Yadoo and H. Cruickshank, “The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya,” Energy Policy, vol. 42, pp. 591–602, 2012.
[12] J. Byrne, Y.-D. Wang, H. Lee, and J. Kim, “An equity and sustainability-based policy response to global climate change,” Energy Policy, vol. 24, no. 4, pp. 335–343, 1998.
[13] U. Deichmann, C. Meisner, S. Murray, and D. Wheeler, “The economics of renewable energy expansion in rural Sub-Saharan Africa,” Energy Policy, vol. 39, no. 1, pp. 215–227, 2011.
[14 A. Bhide and C. R. Monroy, “Energy poverty: A special focus on energy poverty in India and renewable energy technologies,” Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 1057–1066, 2011.
[15] B. Mainali and S. Silveira, “Financing off-grid rural electrification: Country case Nepal,” Energy, vol. 36, no. 4, pp. 2194–2201, 2011.
[16] D. Mans, “Back to the Future: Africa’s Mobile Revolution Should Inspire Rural Energy Solutions,” Huffington Post, 20-May-2014.
[17] L. A. Odarno, “Negotiating the Labrynth of Modernity’s Promise: A Paradigm Analysis of Energy Poverty in Peri-Urban Kumasi, Ghana,” University of Delaware, 2014.

Filed Under: Energy Access, Energy and Climate Investment, Energy Markets, Renewable Energy, Uncategorized Tagged With: Abundant Energy, Clean Energy Financing, Energy Access, Energy Markets, Innovation, Renewable Energy, Water-Energy Nexus

January 15, 2016

Post-Paris Agreement: FREE’S Focus on Subnational Climate Action

By Job Taminiau and Joseph Nyangon
Accelerating climate action and finance at subnational level based on the Paris Agreement.

The 21st Conference of the Parties to the U.N. Framework Convention on Climate Change, or COP 21 (also known as the Paris climate summit) closed in Le Bourget, France after two weeks of intense negotiations, with negotiators agreeing on a landmark “Paris Agreement.” The conference took place from November 30 – December 12, 2015 and was attended by a delegation from the Foundation for Renewable Energy and Environment (FREE). The FREE delegation included Dr. John Byrne, Chairman and President, and Dr. Job Taminiau, Research Principal of FREE. This blog post briefly discusses the outcome document of the negotiations and highlights the experience of attending COP-21.

FREE’s Participation in the COP process
The FREE delegation participated in official side events, interviews, discussions, and meetings throughout the second week of the negotiations. Overall, the FREE delegation was very impressed by the ‘can do’ attitude of, particularly, the subnational actors that were present at the COP. In fact, these subnational actors, on more than one occasion, highlighted their willingness to not only follow-up on negotiators’ progress to seal a deal but to champion and “ratchet-up” local climate action as a viable pathway for future climate change mitigation and adaptation.

FREE co-sponsored and co-organized two side events at the conference. In a side event on the potential contribution of cities to address climate change, co-sponsored and co-organized by FREE in collaboration with the Center for Energy and Environmental Policy (CEEP, University of Delaware) and the Climate Alliance of European Cities with Indigenous Rainforest Peoples (or simply “Climate Alliance”), the Global Covenant of Mayors, and others, Dr. Taminiau offered a perspective on subnational climate change innovation, leadership, and governance by drawing from examples of ‘solar city’ strategies. Such a project could offer a substantial improvement in a city’s energy profile: for example, a high density, vertical city like Seoul could supply 66% of daylight electricity needs for the year and 35% of all-hours annual electricity needs from the use of 30% of the rooftop real estate available in the city. The Europe-based Climate Alliance was a very suitable partner for this message: the organization works with more than 1,700 cities and municipalities spread across 26 European countries to reduce their greenhouse gas emissions.

COP21_Paris Agreement_FREE_John_Byrne_Job_Taminiau_Paris_AgreementL-R: Dr. Taminiau and Dr. Byrne at the Paris climate change conference

Flanked by among others, Camille Gira of Luxembourg European Union Council Presidency; Magda Aelvoet, Minister of State, President, Federal Council for Sustainable Development, Belgium; Tine Heyse, Deputy Mayor of Ghent, Belgium; Josefa Errazuriz, Mayor of Providencia, Chile; Julie Laernoes, Vice-President of Nantes Metropole, France; Marie-Christine Marghem, Belgian Federal Minister of Energy, Environment and Sustainable Development; and Ellý Katrin Gudmundsdottir, Chief Executive Officer and Deputy Mayor of Reykjavik, Iceland, Dr. Taminiau argued that cities are well positioned to help bend the carbon curve. “Cities could be the power plant of the future,” he added.

The second side event organized by the Climate Change Center Korea was titled “Preparing Action Plans for a Post-2020 Climate Change Regime in Asia.” Former prime ministers and senior government officers from Asia were among the participants in this well-attended event, highlighting the need for a new finance, markets and policy regime as well as stronger cooperation and partnerships in Asia to combat climate change. Dr. Duck-Soo Han, Chairman of the Board of Directors of the Climate Change Center and Former Prime Minister of Republic of Korea called for enhanced financial and technological resources in Asia to combat climate change. Professor Haibin Zhang of Peking University and a Member of the Global Advisory Board of the Center for Climate and Sustainable Development Law and Policy (CSDLAP) offered a Chinese perspective on climate policy governance. Dr. Oliver Lah of Wuppertal Institute for Climate (Germany) examined EU-Asia climate partnerships. And Richie Ahuja, Regional Director for Asia of the Environmental Defense Fund (EDF) summarized work in Asian region on clean energy and clean cooking systems as low-carbon solutions.

COP21_Paris Agreement_FREE_John_Byrne_Climate_Action
Dr. Byrne presenting findings from a study on the financeability of large urban solar plants in Amsterdam, London, Munich, New York, Seoul, and Tokyo. Photo by IISD/ENB

Dr. Byrne presented findings from a six-city study on the financeability of large urban solar plants. He described results from Amsterdam, London, Munich, New York, Seoul, and Tokyo, noting financing and policy needs on the cost of installations in these cities to enable infrastructure-scale investment. Particularly, New York City, London, Munich, and Amsterdam could be successful in implementing a solar city strategy without many changes to existing policy structures. Seoul and Tokyo, meanwhile, require more modification to existing conditions in order to produce a viable project that could attract financial resources from investors. For instance, FREE’s researchers find that such infrastructure-scale solar development is financeable in 13 years for Seoul, 10 years for New York City, and 11-12 years for London, Munich and Amsterdam (Figure 1).

Solar city implementation options for the six municipalities under a 10-year financing maturity.
Figure 1. Solar city implementation options for the six municipalities under a 12-year financing maturity. [1]

The Paris Agreement: A New Direction for Climate Change Governance?
Forged by nearly 200 countries to ramp-up climate mitigation and adaptation measures to reel in planet-warming carbon emissions, the Paris Agreement marks a historic shift in climate diplomacy. Indeed, the agreement has been hailed as a monumental step in the climate change negotiation process: “For the first time, every country in the world has pledged to curb emissions, strengthen resilience and join in common cause to take common climate action,” said UN Secretary General Ban Ki-moon during the conference’s closing session. “This is a resounding success for multilateralism,” he declared. Key elements of the new agreement include:

  1. A goal to hold the increase in global average temperature to “well below 2°C and endeavour to reach 1.5°C” relative to pre-industrial temperatures;
  2. Successive nationally determined contributions outlining Parties’ commitments to reduce climate change emissions, to be updated every five years. Each round of commitments needs to represent a progression from previous commitments; and
  3. A regular process of review of the implementation of the Paris Agreement. This “global stocktake” which informs collective efforts on mitigation, adaptation and support on technology development and transfer for developing country parties will take place in 2023 and every five years thereafter.

Six years after the 2009 diplomatic disaster of Copenhagen, the path to Paris had been well-prepared. The COP talks in Copenhagen, in no small part, collapsed due to the continued focus on a top-down, legally binding agreement with strong emission reduction commitments for which, ultimately, willingness to sign on by nation-states was low. The Copenhagen Accord (2009) and subsequent Cancun Agreements (2010) formulated a new approach revolving around a new way of target-setting of more bottom-up, self-determined, national targets. This ‘pledge-and-review’ approach yielded approval from a much larger set of nation-states, including the United States and China. A “fresh” architecture for climate action was set out to be the goal in the follow-up Durban Platform for Enhanced Action (2011).[2] The bilateral talks and agreements between China, the U.S., and India can also be seen as critical preparatory work that allowed for the outcome in Paris. For example, U.S. President Barack Obama and his Chinese counterpart President Xi Jinping met in September 2015 in Washington D.C. announcing new and strengthened bilateral and multilateral climate cooperation, including the establishment of a national cap-and-trade program in China by 2017, providing momentum for success in Paris.

The Paris Agreement marks a break from the past, representing an unprecedented inflection point in the global response to climate change. Over twenty years of negotiations have brought the international community to a point where self-determination, rather than top-down treaty pursuits, has become the new approach moving forward. In this, there appear to be at least two main elements that will shape climate change governance for the years to come.

First, the agreement provides a process for governments to ratchet-up efforts to limit global temperature rise and, for the first time, includes commitments from all key Parties to the convention. The agreement puts emphasis on registering commitments at global, national, provincial/state, local, and corporate scales, and tracks national performance over time. Every five years, beginning in 2020, each country will be required to communicate a new nationally determined contribution for reducing emissions. Potentially, this implies that the Paris Agreement could be the main platform within which climate change action at the global level is articulated for years, only to be routinely updated rather than fully redrafted.

Second, as the focus shifts to implementation, the success of the agreement lies in the Convention’s ability to engage the private sector, financial institutions, cities, and transnational and subnational authorities. Indeed, as Christiana Figueres highlighted during the 2016 Investor Summit on Climate Risk, the Paris Agreement was “clearly the easiest of the components”. [3] Noting the Paris Agreement as the “starting line”, Christiana Figueres continued that the real challenge is to take all the “fantastic intentions” and move them to actual implementation. Similarly, Secretary General Ban Ki-Moon emphasized the gravity of the challenge that lies ahead: “We have an agreement. It is a good agreement. You should all be proud. Now we must stay united – and bring the same spirit to the crucial test of implementation. That work starts tomorrow”.[4]

COP_21_Paris_Agreement Celebration_Christiana Figueres_Laurence Tubiana_Ban_Ki_moon_François_Hollande
L-R: Laurence Tubiana, COP 21 Presidency; UNFCCC Executive Secretary Christiana Figueres; UN Secretary-General Ban Ki-moon; COP 21/CMP 11 President Laurent Fabius, Foreign Minister, France; and President François Hollande, France, celebrating the conclusion of the event. Photo by IISD/ENB

The Bottom Line: Paris Agreement Implementation Requires Subnational Creativity, Innovation, and Leadership
The FREE delegation proposed ‘polycentric’ strategies to COP-21 as a viable way forward for the international community. The proposal is based on ideas and models developed and implemented by FREE, such as the promising contribution of the Pennsylvania Sustainable Energy Finance Program (PennSEF), the innovative character of the Sustainable Energy Utility (SEU) model, or the transformative potential of ‘solar cities’. The proposal titled “A Polycentric Response to the Climate Change Challenge Relying on Creativity, Innovation, and Leadership” highlights the critical importance of subnational actors, particularly cities and other municipal agents. [5] Relying on a wide and diverse landscape of actors to address climate change, the proposed focus on ‘polycentric’ strategies could capture and scale-up the innovation, leadership, and creativity taking place.

FREE has well-established experience with sustainable energy financing programs and, through research such as on solar cities, is actively developing options for transformative change. The SEU model, for instance, has been implemented in the U.S. state of Delaware (with a second bond issuance planned for the near-term) and in Washington, DC and is being actively explored in India and Korea. The U.S. White House in an announcement made by President Obama recognized the SEU model for its promise of transformative change and capability to lower energy use and carbon emissions while improving state economic development. Other programs, like PennSEF and planned future projects, combine innovations in finance, policy and market approaches and are needed to mobilize necessary levels of climate finance and fulfilment of existing commitments of the Paris Agreement.

Concerns linger as to, for instance, the observation that much more needs to be done than is currently pledged by the nation-states in order to meet the two degree target (the so-called ‘ambition gap’). The bottom line of the Paris Agreement therefore is that implementation will require the mobilization of state and non-state actors to perform substantial technical, methodological, and policy efforts to support the accord when it enters into force. A critical factor in this is the leveraging of financial resources to drive transformative change. FREE plans to assist state and non-state actors in developing these capacities. Recombination and careful consideration of the policy-market-finance interaction is at the foundation of FREE’s project portfolio and can deliver a critical contribution towards the implementation of the Paris Agreement.

Notes
[1] Byrne, J., Taminiau, J., Kim, K.N., Seo J., and Lee, J. (2015). “A solar city strategy applied to six municipalities: integrating market, finance, and policy factors for infrastructure-scale photovoltaic development in Amsterdam, London, Munich, New York, Seoul, and Tokyo.” Wiley Interdisciplinary Reviews: Energy and Environment.
[2] As mentioned on the UNFCCC website: https://unfccc.int/key_steps/durban_outcomes/items/6825.php
[3] As discussed at the 2016 Investor Summit on Climate Risk. The Summit seeks to sustain the momentum from Paris and was organized by Ceres, the United Nations Foundation, and the United Nations Office for Partnerships.
[4] https://www.un.org/apps/news/infocus/sgspeeches/statments_full.asp?statID=2875#.Vqe9cSo4HIV
[5] This position paper was authored by Dr. Job Taminiau and Dr. John Byrne in their respective capacity at the Center for Energy & Environmental Policy (CEEP, University of Delaware).

Filed Under: Climate Change, Energy and Climate Investment, Sustainable Urban Infrastructure Tagged With: Clean Energy Financing, Climate Change, Climate Finance, Innovation, Paris Agreement, Renewable Energy, Sustainable Cities, Sustainable Investing

September 15, 2015

Why the U.S. Urgently Needs to Invest in a Modern Energy System

By Joseph Nyangon
Investment in ‘smart’ energy offers a viable and effective long-term solution that allows the energy industry to shift its supply sources, build new transmission and storage systems, and increase its energy efficiency goals.

QER Report cover
The U.S. power grid is one of the most advanced energy systems globally, but its growth has been an evolving patchwork of disparate systems, functions, and components.

In a speech commemorating the thirty-fifth anniversary of the International Energy Agency (IEA) in 2009, former U.S. secretary of state, Henry Kissinger recalled how the energy crisis of the 1970s awakened the world “to a new challenge that would require both creative thinking and international cooperation.”[1] He explained that as “global demand continues to grow, investment cycles, technologies, and supporting infrastructure will be critical.” As a top U.S. diplomat in the 1970s, Kissinger is credited with promoting energy security as a third pillar of the international order through a trifecta of initiatives to bolster incentives to energy producers to increase their supplies, encourage rational and prudent consumption of existing supplies, and improve the development of alternative energy sources. These efforts contributed to the establishment of the IEA in 1974 as a principal institutional mechanism for enhancing global energy cooperation among industrialized nations.

Forty years after the IEA’s founding, the relationship between energy and international cooperation endures, but changes in the energy landscape triggered by a revolution in how we produce, distribute, and consume various forms of energy are affecting the IEA’s fans. The agency interestingly examines the role of sustainable energy options and considers institutional change as often eclipsing conventional supply issues in shaping our energy future. For example, the challenges facing the electric power industry today include the need for diversification of generation, optimal deployment of expensive assets, carbon emissions reduction, and investment in decoupling strategies and demand response. Two key policy imperatives characterize these challenges, notably: the need to adopt policies that combat climate change, and the need for greater energy security due to concerns associated with supply-demand imbalances. Once again, we are at a moment of institutional and industry-wide transformation that calls for strategic investment and partnership to replace, protect, expand, and modernize our energy infrastructure. It is easy to slip into thinking of the nation’s energy landscape as a static challenge. It is not. The boundaries, business models, policies, strategies, and technical solutions have been a function of the incentives and objectives provided by the policy.

The U.S. power grid is one of the most advanced energy systems globally, but its growth has been an evolving patchwork of disparate systems, functions, and components. Because of years of inadequate investment, the electric grid is now aging, outmoded, and unreliable to take full advantage of new domestic energy sources and emerging technologies and business models in the sector. In climate, energy, and economic terms, these issues are defined by whether the next wave of energy infrastructure will further the status quo of the path of least resistance and principally continue relying on conventional fossil energy sources or transition to efficient technologies and a clean energy future. In the first-ever Quadrennial Energy Review (QER) of the U.S. energy infrastructure released in April 2015, modernizing the nation’s energy infrastructure, to foster economic competitiveness, create a domestic clean energy economy, improve energy security, and promote environmental integrity, are identified as central policy concerns facing the country in a time of rapid change. President Obama ordered the review when he unveiled his Clean Power Plan in early January 2014.[2]

Here are six key policy recommendations of the QER report.

  1. Improve the capacity of states and localities to identify and respond to potential energy disruptions: The review identifies severe weather events as the major cause of electric grid disturbances. From 2003 to 2012, severe weather caused an estimated 679 widespread power outages in the U.S. costing the economy between $18 billion and $33 billion annually.[3] Low-probability/high-consequence events also caused various types of electric grid disturbances in energy transmission, storage, and distribution infrastructure, including natural gas transmission infrastructure systems such as pipeline and storage leading to safety concerns. These threats and vulnerabilities vary substantially by region with the Gulf Coast region being more susceptible to hurricanes, thus requiring regional solutions. The report recommends investing in new technologies like smart meters and automated switching devices to ensure much quicker recovery times from disruptions. It also recommends establishing a multi-year program by the U.S. Department of Energy to support the updating and expansion of state energy assurance plans.
  2. Increase investments in electric grid modernization through the expansion of different business models, utility structures, and innovative technologies: The review identifies increased investments in flexible operations and resilience as a more effective and economical solution for serving customer needs by enabling smart growth, in both transmission and distribution systems. Investment in transmission has been on the rise since the 2000s and is expected to grow with improved system reliability and interconnection requirements of distributed generation sources. In 2013, the report explains that investor-owned utilities spent a record high of $16.9 billion on transmission, up from $5.8 billion in 2001.[4] The growing level of transmission investment is needed to replace the aging infrastructure, increase system reliability, and facilitate competitive wholesale power markets. The report recommends adopting new business models, utility structures, and institutions to shape the operation, management, and regulation of the grid as well as optimize and update the Strategic Petroleum Reserve to reflect modern oil markets.
  3. Strengthen regional integration of the North American energy markets: Opportunities for increased integration of markets and policies exist in the North American neighbours: the U.S., Canada, and Mexico. To further energy, economic, and environmental goals, the report recommends developing a common energy market, shared environmental and security goals, and infrastructure that undergirds the three economies [5]. For example, in 2013, energy trade between the U.S. and Canada was approximately $140 billion, while energy trade with Mexico exceeded $65 billion in 2012—a sign of the existing opportunities for integration.[6]
  4. Update and improve quantification of methane emissions from natural gas systems: To enhance the ability of the nation to achieve the targeted environmental goals, the report calls for urgent need to address the direct environmental impacts and vulnerabilities of energy transmission, storage, and distribution infrastructure, more broadly, carbon sequestration infrastructure, long-distance transmission to enable distributed generation and utilization of renewable resources, and smart grid technologies to support energy efficiency. The QER recommends updating greenhouse gas inventory estimates of methane emissions from natural gas systems, increased funding to reduce diesel emissions under the Diesel Emissions Reduction Act, and enactment of the proposed Carbon Dioxide Investment and Sequestration Tax Credit, to support carbon capture technology and associated infrastructure.
  5. Improve siting and permitting of energy infrastructure: The QER identifies the involvement of multiple federal, state, local and tribal jurisdictions to add the time to siting, permitting, and review process of energy infrastructure projects due to overlapping and sometimes conflicting statutory responsibilities. To enhance the credibility of the process, the QER recommends increased meaningful and robust public engagement with local stakeholders to speed up siting decisions, the establishment of regional and state partnerships, and enactment and funding of relevant statutory authorities to improve coordination across agencies.
  6. Strengthen shared transport infrastructures: The report calls for the strengthening of waterborne, rail, and road transport to move energy commodities. It recommends establishing alternative funding mechanisms, public-private partnerships, and grants for shared energy transport systems.

The energy infrastructure challenges highlighted above can be addressed partly by investing in an assortment of technological innovations. This would repurpose energy sectors to trade energy efficiently in today’s extremely difficult managerial, regulatory, and financial environment. Investing in ‘smart’ energy offers a viable and effective long-term solution that allows the industry to shift its supply sources, build new transmission and storage systems, and increase its energy efficiency goals. Finally, these policy recommendations illustrate a key point: changes associated with modernizing our energy infrastructure and the attendant market solutions may change, interplant or even interfirm efficiency.

Notes
[1] Kissinger, H. (2009). The Future Role of the IEA: Speech for the 35th Anniversary of the International Energy Agency, October 2009. Available at: https://www.henryakissinger.com/speeches/101409.html. Accessed on September 15, 2015
[2] The White House (2014). “Obama Administration Launches Quadrennial Energy Review.” January 9, 2014. Available at: https://www.whitehouse.gov/the-press-office/2014/01/09/presidential-memorandum-establishing-quadrennial-energy-review. Accessed on September 15, 2015.
[3] QER (2015). Quadrennial Energy Review (QER) Report: Energy Transmission, Storage, and Distribution Infrastructure, April 2015. Available at: https://energy.gov/sites/prod/files/2015/04/f22/QER-ALL%20FINAL_0.pdf. Accessed on September 15, 2015, pp. S-10
[4] QER (2015), pp. 3-6
[5] Nyangon, J. (2014). International Environmental Governance: Lessons from UNEA and Perspectives on the Post-2015 Era. Journal on Sustainable Development Law and Policy 4: 174–202. Google Scholar
[6] QER (2015), pp. S-22

Photo: Cover of the Quadrennial Energy Review (QER)

Filed Under: Energy and Climate Investment, Energy Economics, Energy Markets Tagged With: Clean Energy Financing, Renewable Energy, Sustainable Investing

April 4, 2015

Mobilizing Public and Private Capital for Clean Energy Financing

By Joseph Nyangon
Innovative financing, increased capital investment and technological improvement are catalyzing renewable energy growth.

A key driver of recent renewable energy gains is cost. As a mass market develops and the technology improves solar and wind power have become more competitive. Photo: Solar Panel Against Blue Sky, Deutsche Bank
A key driver of recent renewable energy gains is cost. As a mass market develops and the technology improves solar and wind power have become more competitive. Photo: Solar Panel Against Blue Sky, Deutsche Bank

The energy market in the United States is undergoing a dramatic transformation, driven by technological advancement, market dynamics, and better policies and laws—none of which was a decade ago. Venture capitalists made huge profits from the computing boom of the 1980s, the internet boom of the 1990s, and now think the next boom will happen on the back of energy. These past booms, however, were fed by cheap energy: coal was cheap; natural gas was low-priced; and apart from the events following the 1973 Arab oil embargo and the 1979 Iranian Revolution, oil was comparatively cheap. However, in the space of the past decade, all that has changed. New resource finds, primarily shale resources from states such as Texas, Oklahoma, North Dakota, and Pennsylvania, exert pressure on the prices of oil and gas. At the same time, there is a growing concern of negative externalities associated with these fossil fuels.

Hybrid vehicles are doing more to fulfill their technological promise. Wind-and-solar powered alternative no longer looks so costly by comparison to natural gas—whose low prices due to increased shale production have shaken up domestic and global energy markets recently. Coal remains relatively cheap, however, its extraction damages ecosystems by destroying ecological habitats. Additionally, combustion of fossil fuels pollutes the air by emitting harmful substances into the atmosphere, such as carbon dioxide, methane, and nitrous oxide that contribute to global warming.

Oil spills, such as the 2010 Deepwater Horizon spill in the Gulf of Mexico and leakages at exploration and extraction points destabilize marine ecosystems, killing aquatic life. Utility firms seeking to avoid political and capital costs of the U.S. Environmental Protection Agency’s (EPA) Clean Power Plan and Mercury and Air Toxics Standard on existing plant performance have began to invest more in energy efficiency and low-carbon technologies that guarantee less harmful emissions. As a result, the industry is accelerating modernization of their generation fleet. These underlying factors, including innovative financing options, increased capital investment, and market incentives, have opened up a capacity gap from conventional plants and an opportunity especially for solar, wind, and other low-carbon technologies.

Innovative financing options: A key driver of recent renewable energy gains is cost. As a mass market develops and the technology improves solar and wind power have become more competitive. In California and New York, a surcharge paid by utility customers to help finance clean energy projects in the two states has generated substantial sums of money, which is being invested in energy efficiency and renewable projects. In Connecticut, the Clean Energy Finance and Investment Authority (CEFIA), a successor of Connecticut Clean Energy Fund (CCEF) has funded over $150 million of clean technology projects and awareness programs statewide.[1] As more states adopt these kinds of programs, they continue to subsidize investment in clean energy programs. Financing clean energy projects, nevertheless, continues to face stiff competition from non-renewable sources. The cost of fossil fuels is still relatively low, mostly because social costs and the price of ecological damage are not factored into existing market prices. Renewable energy development also continues to experience high transactions costs, such as in negotiating power-purchase agreements which can make them more risky to investors.

Capital costs: In the long run, however, real gross domestic product and carbon emissions are likely to be the primary drivers of clean energy consumption, because governments will try to prevent the price of energy from rising too fast or decreasing overly quickly as it can have negative effect on overall economic growth. Thus the price of fossil fuels could have only a small negative effect on the demand for clean energy. The main barrier to large-scale wind and solar projects is obvious—high upfront capital costs. Accordingly, some investors in certain parts of the country continue to demand high premium lending rates to offset the upfront capital risked up to fund clean energy projects than other conventional energy projects. At the same time, technology improvements, especially with regard to solar, and promising much lower future capital costs, which explains why solar energy is the fastest growing source of new energy simply in the U.S. and worldwide.2

Secondary effects: According to the Energy Information Administration (EIA) Short-Term Energy Outlook February 2015, utility-scale solar power generation in the U.S. will increase by more than 60% between 2014 and 2016, averaging almost 80 GWh per day in 2016.[2]  Half of this new capacity will be built in California. The World Energy Outlook 2014 estimates a 37% increase in the share of renewables in power generation in most OECD countries by 2040.[3] However, growth in renewable energy generation in non-OECD countries, led by China, India, Latin America and Africa, will more than double, according to the report. A change in energy policy or regulations in these markets could have even wider secondary effects on energy supply: positive impacts on emission reductions, accelerated substitution effects, and improved cost-competitiveness of renewable energy.

Market incentives and carbon tax: In the absence of fossil-fuel subsidies, which in 2013 alone totaled $550 billion, renewable energy technologies would be competitive with fossil power plants.[4] The effect of fossil-fuel subsidies on renewable electricity generation is fourfold: they weaken the cost competitiveness of renewable energy; boost the incumbent advantage of fossil fuels; lower the costs of fossil-fuel-powered electricity generation; and make investment in fossil-fuel-based technologies favorable over renewable alternatives. For instance, a phase-out of coal subsidies could further limit new construction and use of least-efficient coal-fired plants, thus incentivizing investment in clean energy.

Finally, if new policy causes the marketplace to internalize the risks of climate change, there would be no need for renewable energy subsidies and mandates in order for these sources to reach market parity.

Notes
[1] Connecticut Clean Energy Finance and Investment Authority: https://www.ctcleanenergy.com/Default.aspx?tabid=62
[2] Energy Information Administration’s (EIA) Short-Term Energy Outlook February 2015: https://www.eia.gov/forecasts/steo/pdf/steo_full.pdf
[3] World Energy Outlook (WEO) 2014: https://www.iea.org/publications/freepublications/publication/WEO_2014_ES_English_WEB.pdf
[4] Ibid, WEO, p.4

Filed Under: Energy and Climate Investment, Energy Economics, Energy Markets, Renewable Energy, Sustainable Urban Infrastructure Tagged With: Clean Energy Financing, Climate Finance, Energy Efficiency, Renewable Energy, Solar City, Sustainable Investing

  • 1
  • 2
  • Next Page »

News & Blog

  • FREE Thoughts Blog
  • Announcements
  • Media Kit

Blog Categories

  • Carbon Markets
  • Climate Change
  • Energy Access
  • Energy and Climate Investment
  • Energy Economics
  • Energy Markets
  • Global Environments
  • Renewable Energy
  • Sustainable Urban Infrastructure
  • Uncategorized
  • Water-Energy Nexus

Policy Brief Authors

Policy Brief Authors

Announcements

New Article Examines Public Transportation and the Legacy of Jamie Lerner and Curitiba, Brazil

American national climate policy inaction leads to emboldened emerging voices in communities, policy successes

Climate expert to Korean TV audience: How can the U.S. give energy sector workers “a just transition” in moving from coal to renewable energy?

Recent Posts

Simply Switching to Electric Vehicles Today is Not Enough to Address Climate Change

How can U.S. climate action equalize the wealth gap between white and black American families?

Stay Connected

Get email updates about new announcements, policy briefs and relevant information.

We never share your contact details.

Article Tags

Abundant Energy Building Energy Efficiency Standards California Carbon Markets Carbon Trading China Clean Energy Clean Energy Financing Climate Change Climate Finance Decarbonization Duck Curve Energy Access Energy Efficiency Energy Markets Environmental Justice Ethical Cities Green Dispatch Innovation Microbeads Natural Gas NIMBY Nuclear Energy Paris Agreement Philadelphia Pollutants Polycentric Climate Governance Renewable Energy Shale Gas Solar Solar City Solar Electricity Solar Mandate Sustainable Cities Sustainable Investing Title 24 Water-Energy Nexus

Connect

Foundation for Renewable Energy and Environment
630 5th Avenue, Suite 2000
New York, NY 10111

Mailing Address:
1013 Beards Hill Rd.
STE 101-M #200
Aberdeen, MD 21001

E: contact@freefutures.org
P: +1 212 705 8758
P: +1 215 494 7383 (Pennsylvania)

SUPPORT FREE

Social

  • Email
  • RSS
  • Twitter
  • YouTube

Search FREE

Copyright © 2023 · FREE · Site by: Epic Brand Media