No one denies the importance of water. Our life depends on it and we need it to survive. However, we don’t always know the worth of water until the well runs dry or unless we live in drought-stricken parts of the world.
Many studies occasionally remind us of the importance of water. For example, the World Health Organization reports that 748 million people still lack access to clean drinking water and 2 million annual deaths are attributable to unsafe water, lack of sanitation and unhygienic conditions [1]. Furthermore, with growing concerns of climate change, water shortages are expected to become worse in the near future. Current projections of population and water demand growth, particularly in developing countries, and climate change impacts have led some to project that in 2030 global water demand will outstrip current supply by 40 percent [2].
Interestingly, a big water consumer is the energy sector. In 2010, global water withdrawals for energy production were estimated at 583 billion cubic meters or 15% of the world’s total water withdrawals [3]. This suggests that the energy sector can play a great role in addressing water problems if we find energy sources and technologies requiring less water. If we fail this task, we could face two crises in the coming decades – energy and water deficits [4].
Sustainable energy technologies, such as solar PV and wind power, can serve this role. Unlike fossil-steam (coal-, gas- and oil-fired plants on a steam-cycle) and nuclear power plants, they not only use very small amounts at the site of electricity generation but also have little or no water use associated with the production of fuel inputs [3][5]. For example, wind and solar PV barely require water to produce 1 MWh of electricity, while coal- and gas-fired plants and nuclear power plants use 390, 180, and 560 gallons of water, respectively [5]. And if we practice energy conservation, we can actually cut water use for the sector.
These facts provide a key reason for rapid deployment of sustainable energy technologies: our health and environment improve when we make thoughtful energy choices!
Notes
[1] World Health Organization (2014). UN-water global analysis and assessment of sanitation and drinking water (GLAAS) 2014 report: investing in water and sanitation: increasing access, reducing inequalities.
[2] The 2030 Water Resources Group (2009). Charting Our Water Future: Economic frameworks to inform decision-making.
[3] IEA (2011). Water For Energy: Is energy becoming a thirstier resource? Excerpt from the World Energy Outlook 2012.
[4] Wang (2009). Integrated Policy and Planning for Water and Energy. Journal of Contemporary Water Research and Education. Issue 142, pages 1-6, June 2009.
[5] Glassman D., Wucker M., Isaacman T., Champilou C. (2011). The Water-Energy Nexus: Adding Water to the Energy Agenda. A World Policy Paper.
Photo credit: U.S. Department of Energy